The existence of $M_{\Delta T2}$ endpoint s and shining buried new particles

Won Sang Cho (SNU)

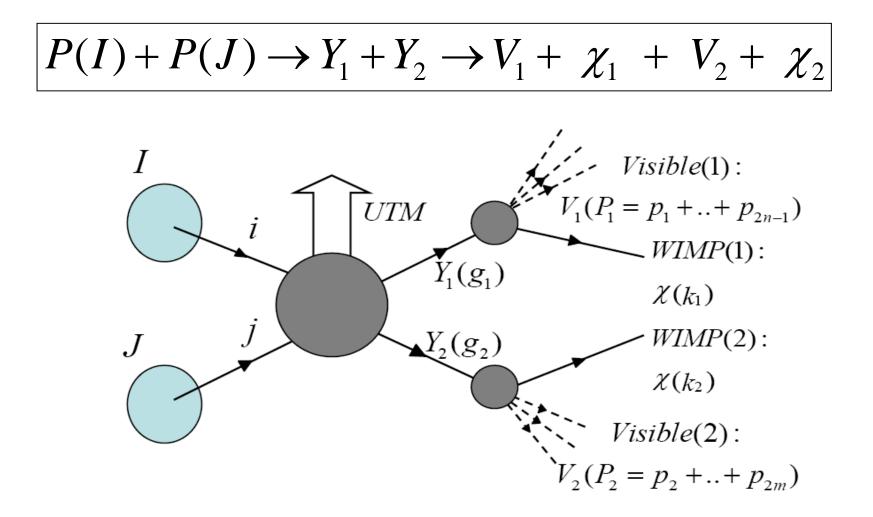
2009.9.3.

KIAS-KAIS-YITP Joint Workshop on DM, LHC and Cosmology

- Introduction
- Transverse mass and pseudo transverse mass, $M_{\Delta T}$
- The existence of pseudo stransverse mass $(M_{\Delta T2})$ endpoint
- Properties and experimental feasibility
 - Measuring $M_{\Delta T2}$ endpoints
 - Observing multi $M_{\Delta T2}$ endpoints buried in same signature (21 or 2jet + MET)
- Conclusion

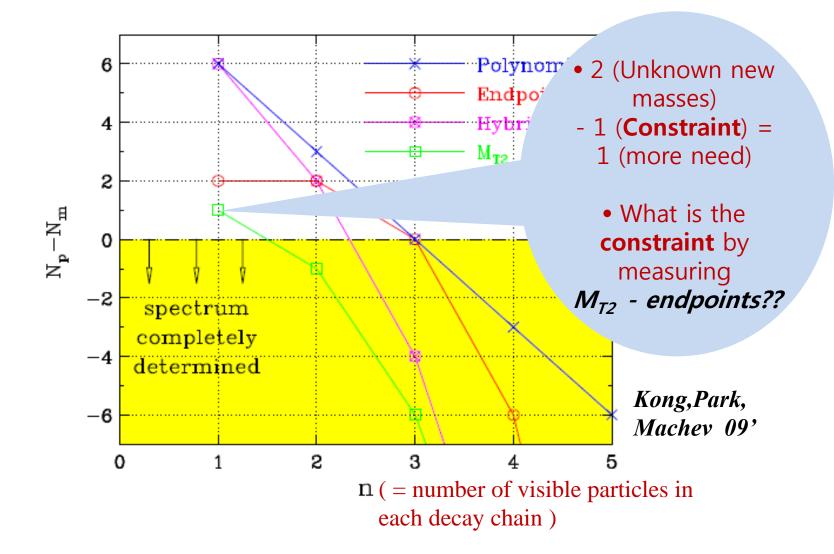
Event topology

• Pair-produced new particle Y decaying into visible particles, V plus an invisible WIMP, χ :



- Measuring the new particle masses is not easy.
 - Partonic CM frame ambiguity (at HC)
 - Missing information from several missing particles (at least, 2 in several NP models with DM)
 - Complex event topologies
- Several methods
 - Using Invariant mass edges, On-shell relations, M_{T2} endpoints
 - Hybrids with states of art will be the best.
- Using the ' M_{T2} endpoint' has strong power for mass measurement with short decay chains

• Possibility of mass measurement in various new event topology



• M_{T2} - the extension of the transverse mass, M_T for the event with two missing particles

Transverse mass of $Y \rightarrow V(p) + \chi(k)$ $M_T^2 = m_V^2 + m_{\chi}^2 + 2\sqrt{m_V^2 + |\mathbf{p}_T|^2}\sqrt{m_{\chi}^2 + |\mathbf{k}_T|^2} - 2\mathbf{p}_T \cdot \mathbf{k}_T$ \Rightarrow Independent of the longditudinal momenta. \Rightarrow One may use an arbitrary trial WIMP mass m_{χ} to define M_T (True WIMP mass $= m_{\chi}^{true}$)

Stransverse mass of $Y_1 Y_2 \rightarrow (V_1(p_1) + \chi_1(k_1)) + (V_2(p_2) + \chi_2(k_2))$ $M_{T2}^2 = \min[\max\{M_T(Y_1), M_T(Y_2)\}]$ \Rightarrow Minimization over all possible WIMP transverse momenta

• For all events, $M_{T\&T2}(m_{\chi}=m_{\chi}^{true}) \leq m_{Y}^{true}$

• In the n=1 case, the constraint from M_{T2} - endpoint is p_{θ} [C.C.K.P.]

$$\mathbf{M}_{T2}^{\max 2} (\mathbf{x}) = \mathbf{p}^{\circ} + \sqrt{\mathbf{p}^{\circ 2} + \mathbf{x}^{2}},$$

$$x = \text{trial WIMP mass}$$

$$p^{\circ} = \frac{m_{Y}^{2} - m_{x}^{2}}{2m_{Y}}, \text{ the momentum of v \& } \chi \text{ in the rest frame of Y}$$

It's an interesting result of M_{T2} kinematics because each of the two mother particles is not at rest in LAB frame!
 #Caution

It is only when total transverse momentum of

2 mother particle system is zero. $(p_T(Y_1) + p_T(Y_2) = 0)$

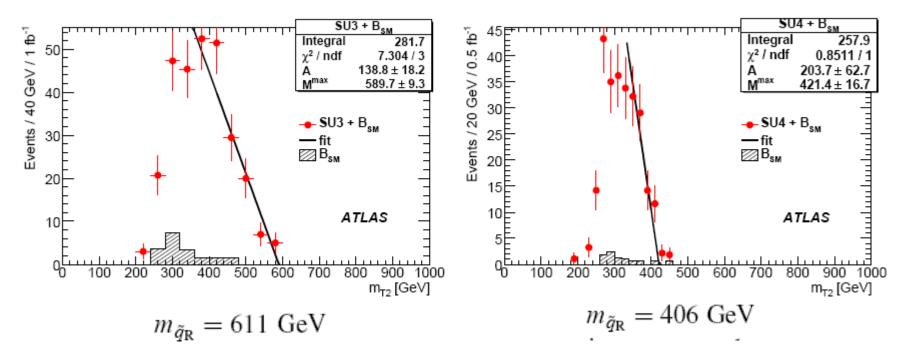
It is known that if (Y1Y2) system has non zero PT,

then one can also get the boosted momenta as nontrivial constraints

[B.Gripaios, A.Barr, C.Lester],

providing the possibility to get the 2 unknown masses even with most simple 2-body kinematics (Practically hard to observe as lack of statistics of the event with a fixed 'highest boost'.) • M_{T2}^{max} for n=1, m_x known

ATLAS Technical Design Report 2009



 M_{T2} -endpoint measurement usually has O(1~10%) systematic error from fitting process (fitting function, cuts, range ...).

Then P^0 from other observable ?

M_T and $M_{\Delta T}$ (p)

Transverse mass(M_T) & invariant mass(M) of $Y \rightarrow V(p) + \chi(k)$ $M_T^2 = m_V^2 + m_\chi^2 + 2\sqrt{m_V^2 + |\mathbf{p}_T|^2}\sqrt{m_\chi^2 + |\mathbf{k}_T|^2} - 2\mathbf{p}_T \cdot \mathbf{k}_T \le M^2$ \Rightarrow Defined in any frame with fixed M_T endpoint, M.

Pseudo transverse mass $(M_{\Delta T})$ & pseudo invariant mass (M_{Δ}) $M_{\Delta T}^{2} = m_{V}^{2} + m_{\chi}^{2} + 2\sqrt{m_{V}^{2} + |\mathbf{p}_{T}^{0}|^{2}}\sqrt{m_{\chi}^{2} + |\mathbf{p}_{T}^{0}|^{2}} - 2(\mathbf{R}(\Delta)\mathbf{p}_{T}^{0}) \cdot (-)\mathbf{p}_{T}^{0}$ $\leq M_{\Delta}^{2}(=m_{V}^{2} + m_{\chi}^{2} + 2\sqrt{m_{V}^{2} + |\mathbf{p}_{T}^{0}|^{2}}\sqrt{m_{\chi}^{2} + |\mathbf{p}_{T}^{0}|^{2}}Cosh\Delta\eta - 2(\mathbf{R}(\Delta)\mathbf{p}_{T}^{0}) \cdot (-)\mathbf{p}_{T}^{0}$ # $\mathbf{R}(\Delta)$ is the rotation in transverse plain by anlge, Δ , # $\Delta\eta =$ rapidity difference between the visible and invisible particles \Rightarrow Defined in the rest frame of Y with fixed $M_{\Delta T}$ endpoint, M_{Δ} \Rightarrow Endpoint useful only for a mother particle with $\mathbf{P}_{T} = \mathbf{0}$

If it is possible, then the pseudo-transverse mass endpoint measurement will also provide us the P^0 .

$$M_{\Delta T}^{\max 2}(x) = m_V^2 + x^2 + 2\sqrt{m_V^2 + |\mathbf{p}^0|^2}\sqrt{x^2 + |\mathbf{p}^0|^2} + Cos\Delta |\mathbf{p}^0|^2$$

x = trial WIMP mass

\rightarrow How about the new mother particle pair, each with nonzero P_T ?

• $M_{\Delta T}$ endpoint can be visible using $M_{\Delta T2}$ (pseudostransverse mass) variable defined in the LAB frame, for the pair of mother particles with total $P_T=0$!

Def > **Pseudo - stransverse mass** $(M_{\Delta T2})$ **for** $Y_1 Y_2 \rightarrow (V_1(p_1) + \chi_1(k_1)) + (V_2(p_2) + \chi_2(k_2))$

$$M_{\Delta T2}^{2} \equiv \min[\max\{M_{\Delta T}(Y_{1}), M_{\Delta T}(Y_{2})\}]$$

$$M_{\Delta T} \equiv m_{V}^{2} + m_{\chi}^{2} + 2\sqrt{m_{V}^{2} + |\mathbf{p}_{T}|^{2}}\sqrt{m_{\chi}^{2} + |\mathbf{k}_{T}|^{2}} - 2(\mathbf{R}(\Delta)\mathbf{p}_{T}) \cdot \mathbf{k}_{T},$$

$$\# \mathbf{p}_{T} \text{ s' are visible transverse momenta in the LAB frame}$$

$$\# \min\&\max \text{ over all possible invisible momentum } \mathbf{k}_{T}$$

• Then, the endpoint behavior in trial WIMP mass, x, also provides the P⁰

 $M_{\Delta T2}^{\max 2}(x) = m_V^2 + x^2 + 2\sqrt{m_V^2 + |\mathbf{p}^0|^2}\sqrt{x^2 + |\mathbf{p}^0|^2} + Cos\Delta |\mathbf{p}^0|^2$ x = trial WIMP mass

- This realization results from the same reason of $M_{T2}^{max}(x)$ being described by p^0 , as if each of the two mothers is transversely at rest in LAB frame.
- Condition for PST endpoint :

 $\delta_T \equiv |P_T(Y_1 + Y_2)| = \theta$

• Disadvantage of using PST (or PT) endpoint

- Weak for nonzero δ_T (from ISR ..) effect even with correct WIMP mass input. (always need δ_T upper bound cut)

- The nonzero $\boldsymbol{\delta}_T~$ effect on the endpoint :

The shifted endpoint of $M_{\pi T}(x)$ by δ_{T} $\Delta M_{\pi T}^{\max}(x)/M_{\pi T}^{\max}(x) \sim \frac{1}{2} f_{\pi}(\hat{x}) \alpha \cos \phi$, (small α) $\Rightarrow \begin{cases} \sim \frac{1}{2} \cos \phi \alpha \ (\hat{x} \ll 1) \\ \sim 0 \ (\hat{x} \gg 1) \end{cases}$, where $\hat{x} = x/p_{o}$, $\alpha = \delta_{T}/M_{Y}$, and

 ϕ = azimuthal angle of visible particle in the mother particle's rest frame. However, even with nonzero deltaT, the multi peak differences can be preserved within the more suppressed shift!! • Advantage of using PST endpoint

- If $\Delta = \pi$ and $m_{vis} \sim 0$, then $M_{\pi T2}(x)$ projection of the events has extremely enhanced endpoint structure with proper value of trial WIMP mass(x), originated from Jacobian factor between M_T and $M_{\pi T}$

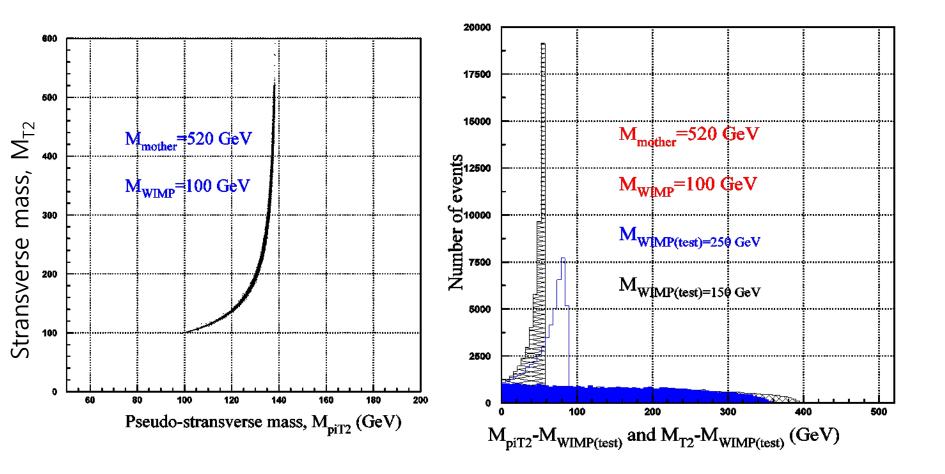
$$\sigma^{-1} \frac{d\sigma}{dM_{\pi T}(x)} \sim J(M_{\pi T}(x), M_{\pi T}(x)) \sigma^{-1} \frac{d\sigma}{dM_{T}(x)}$$

Then,

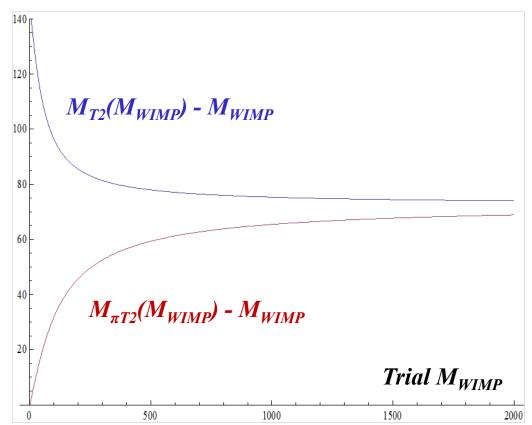
$$J \rightarrow \begin{cases} M_T \text{ max region, } (\frac{M_\pi(x)}{M(x)})^2 (\frac{E_x + P_o}{E_x - P_0})^2 \sim finite \\ M_T \text{ min region, } \frac{M_\pi(x)}{M(x)} \rightarrow 0 \quad (\text{ small } x) \end{cases},$$

such that $J_{max} / J_{min} \rightarrow \infty$ for small x ignoring the visible mass.

• In result of very different compression rate, most of the large M_{T2} events are accumulated in narrow $M_{\pi T2}$ endpoint region



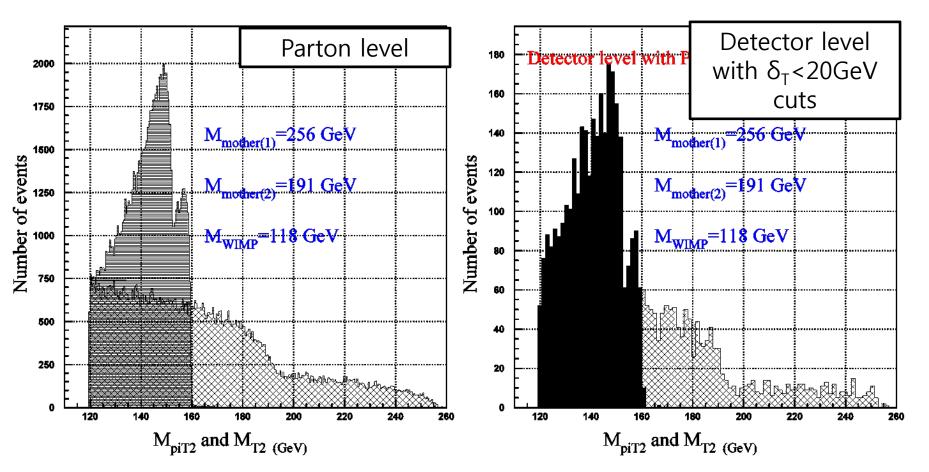
- This sharp endpoint (effective triangular fit) can be rather free from the systematic errors of fitting ranges, cuts, and functions, as it shrink the higher range of M_{T2} distribution into very narrow region (depending on x)
- The ranges of M_{T2} and $M_{\pi T2}$ distribution in varying trial WIMP mass



Uprise of buried new particle endpoints

May be possible, depending on the mother particles' production rate and branching ratio, giving same signature (*2lepton/jet* + *MET*)
Measurement of mass differences precisely with small systematic fit errors

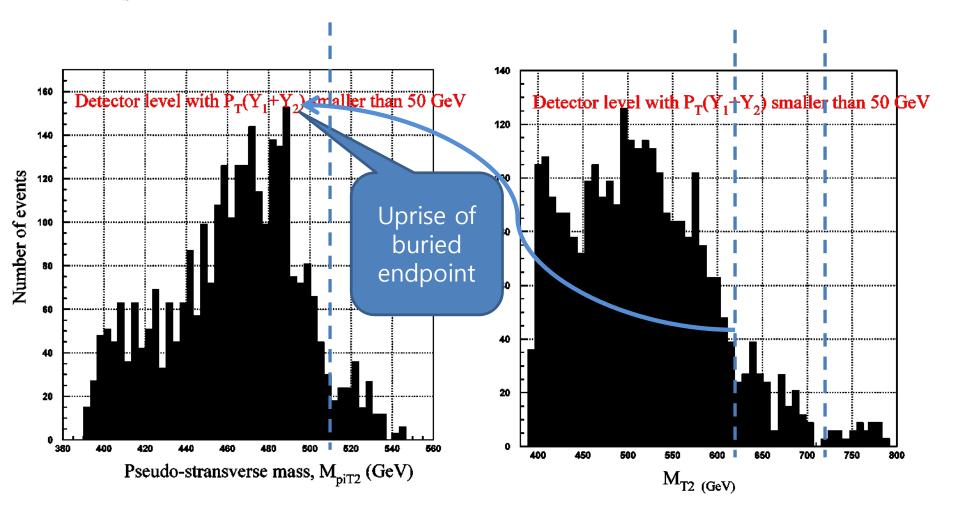
- Example (1) LH or RH slepton pair production $\rightarrow 2l + 2chi10$



Example (2) *LH/RH squark* mass measurement using 2 jet + MET signature

LH/RH squark mass = 722, 618 GeV

 m_{LSP} (chi10)=400 GeV, with sizable bino and wino components



CUTs used : 1) Njet ≥ 2

2) No b-jets, No leptons

3) $\delta_T = |P_T(Y_1) + P_T(Y_2)| < 20 \text{ GeV}$

4) P_T of 2^{nd} hardest jet > 80 GeV

Conclusion

• *Pseudo-stransverse mass(PST)* distribution has very impressive endpoint structure enhancement with respect to varying trial WIMP mass.

- It might give us a chance to measure the p_{θ} constraint with reduced systematic uncertainties from endpoint fitting.
- In addition, the several buried endpoints can be uprised in the *PST projection*, enabling us to measure the mass differences between the different mother particles, buried in same signature (2l(2jet) + MET) (The multi PST endpoint differences are rather free from the δ_T effect)
- Optimal value of trial WIMP mass with good resolution power, should be studied.